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Chapter 5 Inclined Plane Sliding

Summarx

In this chapter experiments using an inclined plane sliding

technique to determine angles of friction are described.

Experiments using wooden blocks of different geometries and
metal weighted wooden sliders to study the effect of stress distribution
on measured values of @, show that the angle of sliding is dependﬁ%t upon
the geometry of the block (height: length ratio), and mass of the block,
independéntly. Experiments in which the geometry of the leading edge of
the sliding block is varied show that blocks with pointed leading edges

slide at lower angles than blocks with straight edges.

Experiments using rock sliders attachea to blocks of different
density materials and geometries are described. It is shown that for
repeated sliding, the angle of sliding decreases with displacement
for most rock types studied. The residual angle of sliding reached is
shown to be dependant upon the presence of rock flour between the
surfaces. The area of wear is shown to be directly related to stress

distribution.

The initial steep drop in angle of sliding seen for most rock
types in the early stages of testing, is accompanied by the generation
of large amounts of rock flour, relative to that generated during later

§ Staées of testing. The residual angle of sliding for rock surfaces
covered in rock flour is not dependant upon the grain size of the rock
flour. Observation suggests that the dominant process involved in the
decrease in angle of sliding is one of attrition involving the shearing

and polishing of asperities.
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The final section describes experiments on Darleydale sandstone
sliders using 32 blocks of different geometries and densities. The
relationships between geometry, mass and angle of sliding observed
for wood are not seen for rock. Comparison of results with those
from more conventional testing apparatus show good correlation for
peak values and it is concluded that the inclined plane test is

reliable and produces repeatable results.
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Chapter 5. Inclined Plane Sliding
5.1 Introduction

In chapter 3 the design of a vibrating test rig is described.
This design entails an inclined plane on which a block is placed in a stable
position. Sliding is then induced by input of a horizontal vibratory

force.

The idea of using an inclined plane to determine the angle of
friction dates back to Leonardo da Vinci. The test is rarely used noﬁ,
direct shear tests being preferred. This preference is due especially
to limitations on the applied loads that may be used in inclined plane
tests, Hencher (1976). Another reason is that the test which is used
in many Physics courses as a standard teaching experiment is not generally
regarded as being very repeatable, advice being given to tap the block
in order to obtain less erratic results, Aharoni (1972). To the best
knowledge of the author no experiments have been reported that investiéate

the cause of these erratic results.

The mathematical analysis of inclined plane sliding and its relation

to Coulomb friction have been given in Chapter 3.

5.2 Apparatus

’

The apparatus used is illustrated diagramatically in figure 5.1.
The basal plane is raised by turning a screw attached to the plane by
means of a ball and socket joint. The raising system is greased to
prevent vibration and involves approximately three complete screw
rotations for a single degree increase in inclination. Preparation of

specimens and top block are described later.
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Figure o 1 Apparatus used in irclined plare sliding experiments.
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5.3 Stress Distribution along an Inclined Plane

Although components of load are simply controlled by the angle

of inclination of the slope, stress distribution is more complex.

In an orthogonal block, resting on an inclined plane, it is clear
that the total weight of the block acts through its leading edge at the
moment of toppling, and the stress along that edge is theoretically

infinitely large.

The distribution of stress along the base of the block will vary with
the inclination of slope and the geometfy and density distribution of
the block. The stresses will be highest at the down-slope edge of the

block and least at the rear edge.

A simple experiment to illustrate this fact may be made by placing
a piece of paper under the rear half of a block on a plane and trying
to remove it by pulling when the plane is hofizontal and aga%n when
inclined. It is found that the paper may be more easily extracted

from an inclined block. N

A mathematical analysis of this stress distribution is given in

Appendix 1.

The area of probable contact between the surfaces will be controlled
by the position of the weight vector, assuming a random distribution of
asperities. The majority of contacts will be made, therefore, towards
the down—slopé edge of the block and the shear strength of the

discontinuity will depend upon the nature of the surfaces in this area
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of contact. The ratio of shear to normal load components is not affected

by the uneven distribution of stress.

Amontons sécond law states that the frictional coefficient and
hence friction angle for two surfaces in contact is independant of
normal load. It has been shown, however, that rocks sometimes show a
decreasing frictional coefficient with increasing normal stress,

Maurer (1965), Muwell (1965), Hobbs (1970).

The uneven stress distribution along the base of a block on an
inclined plane may, therefore, result in variable strength along the

surface.

As a precursor to the tests using the vibrating test rig a series
of experiments were carried out to investigate the reliability of the
inclined plane sliding technique for determining angles of friction
and the effect that uneven stress distribution due to variable block
geometry and density may have on the results. The results obtained in
this manner could then be used for comparison with angles of friction

obtained from the vibrating test rig.



T 136

5.4 Inclined Plane Sliding tests using Wooden Sliders

Introduction

Bowden and Tabor (1964) report experiments carried out to investigate
the friction of wood and concluded that friction arises from adhesion

and deformation a£ the regions of real contact.

The experiments described below were performed to investigate
repeatability of inclined plane sliding tests and the importance of
stress distribution to the angle of sliding. They were not carriedr
out with the purpose of determining a fundamental coefficient of friction
for a.specific wood and preparation of surfgces was therefore, not as
exacting as reported by Bowden and Tabor. Each slider, however, was of
the same wood and cut in a similar manner. All tests were carried out

N in air at room temperature. A set of orthogonal blocks of different
heights but same basal dimensions were prepared. These blocks are
described in terms of internal angle, «, i.e. the angle made between the
leading edge normal to the shear plane and a line joining the centre of
gravity and furthest projection on the'plane in a down-slope direction,

(see diagram below).

6f gravity

Tall homogeneous blocks, therefore, have low values of «, squat blocks

have high values of o.
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Blocks were placed on the plane in either position 1 or 2, edge or

corner forward, respectively.

Position 1. Position 2.

A first series of tests was carried out using each orthogonal

block individually.

A second series of tests was carried out using columns of blocks
in which the basal block was always the same. In this way the geometry

of the sliding mass was varied whilst the sliding surface remained the

sSame.

A third series used metal-weighted wood sliders, hence providing
results for different normal loads to those in the first series of

tests but for a similar range of geometries.

Experimental Procedure

Each block in turn was placed on a horizontal planar surface of
the same wood, the inclination of which was gradually increased until

sliding occurred. The angle at sliding was noted.

Experimental Observation

Several important features were noted during the experiments that

are directly relevant to the interpretation of the results.
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i) Blocks were seen to tip forward, when the plane was still inclined
at several degrees below the sliding angle. Light could occasionally
be seen between the rear edges of the blocks and the plane. This
was especially seen for taller blocks. Tipping forward may be
caused by moments about asperities or by deformation at the leading

edge of the block.

deformation at
moments about leading edge

an asperity

ji) On sliding, blocks in position 1 normally slid the whole length
of the plane. Blocks in position 2 generally slid at lower velocities

and often stopped sliding after a short distance.

iii) Throughout the series of tests it was found that if a block
had failed at a certain angle, B, and this was then reduced by only
a few degrees, to a position at which the block was previously
stable, and the block then replaced, the block would no longer‘be
stable. An attempt was made to stabilise blocks by pressing them
onto the surface after replacing them at angles close to their
angles of sliding but this did not seem to increase their resistance

to sliding markedly.
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Results

The results of sliding tests using wooden blocks and weighted
wooden sliders are given in figures 5.2 to 5.9. Angle of sliding is
plotted against the internal angle (a°) of each block in figures 5.2 to
5.6. Angle of sliding is plotted against the normal load component
for each block at sliding, in figure 5.7. In figures 5.8 and 5.9, shear
load components versus normal load components at sliding are plotted.
Figure 5.8 contains data for light wooden blocks, figure 5.9 for the

heavier metal weighted blocks.

Discussion

The scatter of data in figures 5.2 to 5.6 is considerable but

three major trends are indicated:-

i) The angle of sliding increases with increasing angle «
(squatter blocks);

ii) The angle of sli§ing for blocké placed in position 2 is
lower than those in position 1. Figures 5.8 and 5.9 in
which shear load components are plotte@ against normal load
components for blocks in positions 1 and 2 emphasize this point:

iii) The angle of sliding decfeases with increasing nofmal load.
This is illustrated by figures 5.6 and 5.§: The metal
weighted blocks have a density approximately ten times that

of the wooden blocks.

Figure 5.6 for position 1 or position 2 sliding is bilinear. If
geometry were the cnly parameter affecting the angle of sliding all
data for either position should lie on a single line. In fact blocks

of the same geometry but different weight slide at different angles,

139.
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the heavier blocks at lower angles than the light blocks. In figure

5.7 the angles of sliding for metal weighted sliders and wocden blocks
in position 1 are plotted against normal load at sliding. This graph
is also bilinear illustrating that vafiation in normal load alone does

not explain the results obtained.

It is difficult to formulate a theory that explains g1l the
observed results and experimental observations presented above. A
useful starting point, however, is to assume that the shear strength at
sliding (S) can be expressed by an equation of the following type:

(see chapter 4)
S = Netane + k... aee P 5.1
Where N is the normal load component, @ an angle of friction for wood

surfaces and k a 'cohesive' component.

Now considering blocks in position 1, there are two possible
assumptions that may be made about the value of gi=-
1) o must be equal to or less than 20.5°, the lower limit
for sliding angle of blocks in position 1:
2) o may be greater than 20.5°, {i.e. that certain blocks slid
at angles of inclination less than the angle of friction
for their surfaces).
Considering case 1, by taking the values for 8 and N for each block at
sliding (table 5.1) and substituting these values into the above
equation 5.1 for various possible values of & (17° -~ 20.5°), values for
lk are obtained for each block at sliding, (table 5.2). Wooden blocks

are numbered Wd(1 - 14), metal weighted wooden sliders, Wa/Mt(1 - 8).

The accompanying figures (figures 5.10, 5.11) show some interesting
relationships. If k is dependant upon deformation then it should be

related to the weight (W) of the block causing deformation. Similarly,



Block Beav s N W a®
No. Newtons Newtons | Newtons

wa 1k 34.0 0.1289 0.1911 0.2306 62.92
Wd 13 32.0 0.1481 0.12371 | 0.2796 62.92
Wa 12 30.38 . 0.1836 0.3132 0.3630 56.45
Wwd 11 30.63 0.2350 0.3968 0.4611 L5.96
wd 10 30.06 0.2703 0.4670 | 0.5396 45.00
wd 9 28.63 0.284k4 0.5210 | 0.5936 42,86
wd 7 27.50 0.3285 0.£309 0.7113 33.90
wa 6 27.75 0.3541 0.6729 0.760%L 3%.10
wd 8 27.50 0.3896 0.7434 0.8437 33.42
wd 3 23.88 0.3694 0.8343 0.912L 26.h3
Wa k 23.50 0.3697 0.8502 | 0.9271 26.57
Wwa/Mt/8 | 28.40 0.4527 0.8372 | 0.9517 73.30
Wa 2 T 20.75 0.4293 1.1331 1.2117 21.65
Wa 5 23.63 0.5250 1.200 1.3098 27.11
Wd 1 T 20.75 | 0.5388 1.4221 1.5207 21.65
Wa,/Mt/7 27.80 0.8831 1.6749 1.8935 61.34
Wa,/Mt/6 26.10 14524 2.9648 3.3014 49.52
Wa/Mt/5 25.86 1.6377 3.3787 3.7547 b5.77
wa/Mt/k | 25.60 2.2425 4.6805 | 5.19 37.43
Wa/Mt/3 23.50 2.8069 6.4555 7.0394 29.60
Wa/Mt/2 21.00 2.9183 7.6022 8.1931 26.26
vid/Mt/1 20.50 3.3500 8.9600 | 9.5657 22.79

Table 5.1 Angle of sliding

P = Angle of sliding

S5 = Shear load at sliding

1 = Normal load at sliding
W = Weight of block

@ = Internal angle of block
T indicates toppling failure




T indicates toppling failure.

Blocé\\f 17° 18° 19° 20° 21° 22° 25°

No.
wd 14 0.0705 | 0.0668 | 0.0631 | 0.0593 | 0.0555 | 0.0517 | 0.04
wd 13 0.0756 | 0.0711 | 0.0665 | 0.0618 | 0.0571 | 0.0523 | 0.038
wd 12 0.0878 | 0.0818 | 0.0758 | 0.0696 | 0.0634 | 0.0571 | 0.038
Wd 11 0.1137 | 0.1061 | 0.0984 | 0.0906 | 0.0827 | 0.0747 | 0.05
wd 10 0.1275 | 0.1186 | 0.1095 | 0.1003 | 0.910 | 0.0816 | 0.053
wd 9 0.1251 | 0.1151 | 0.1050 | 0.0948 | 0,084k | 0.0739 | 0.0k
wa 7 0.1356 | 0.1233 | 0.1113 | 0.0989 | 0.0863 | 0.0736 | 0.034
wd 6 0.1484 | 0.1355 | 0.122k | 0.1092 | 0.0958 | 0.0822 | 0.0L
wa 8 0.1608 | 0.146L | 0.1319 | 0.1172 | 0.1023 | 0.0872 | 0.0k
wd 3 0.1143 1 0.0983 | 0.0821 | 0.0657 | 0.0491 | 0.0323% [-0.02
wd 4 0.1098 | 0.0935 | 0.0770 | 0.0603 | 0.0433 | 0.0262 |-0.02
wd/Mt/8 | 0.1967 | 0.1807 | 0.164k | 0.1480 | 0.1%313 | 0.1144 | 0.062
wd 2 0.0829 | 0.0611 | 0.0391 | 0.0169 }|~0.0057T|-0.0285T |~0.099
Wd 5 0.1581 | 0.1351 | 0.1118 | 0.0882 | 0.0644 | 0.0402 |-0.03
Wd 1 0.1040 | 0.0767 | 0.0491 | 0.0212 |{~-0.0071T|-0.0358T |-0.12
Wwda/Mt/7 | 0.3710 | 0.3389 | 0.3064 | 0.2735 | 0.2402 | 0.2064 | 0.102
Wa/Mt/6 | 0.5460 | 0.4891 | 0.4315 |0.3733 | 0.3143 | 0.2545 | 0.07
Wa/Mt/5 | 0.6047 | 0.5399 | 0.4743 | 0.5080 | 0.3407 | 0.2726 | 0.062
Wwa/Mt/4 | 0.8115 | 0.7217 0.6309 |0.5389 | 0.4L58 | 0.3515 | 0.06
Wd/Mt/3 | 0.8333 | 0.7094 | 0.5841 | 0.4573 | 0.3289 | 0.1987 |-0.203
Wd/Mt/2 | 0.5941 | 0.4482 | 0.3007 | 0.1513 | 0.0001 -0.1532 |-0.62
wd/Mt/1 | 0.6107 | 0.4387 | 0.2648 | 0.0888 |-0.0894 |-0.2701 |-0.828

Table 5.2 Calculated values of k for various assumed values of o°
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the uneven stress distribution (Appendix 1) might be expected to
effect values for k especially where the angle of inclination is close
to the internal angle of the block. Values of k for g = 17° and @ = 20°
have, therefore, been plottéd in figures 5.10 and 5.11 against weight

of block and internal angle separately.

It can be seen from figures 5.10 and 5.11 that for values of o
less than 21°, k has a linear relationship with W, where the intermnal
angle of the block is greater than & by approximately 13°. For blocks
with internal angles closer to @, k drops off in value rapidly with

decreasing o.

The fact that k increases with W suggests that the dominant cause
of k is deformation resulting in the block becoming embedded into the
surface of the basal plane. Presumably with blocks of internal angles
close to @, the uneven distribution of stress, (see Appendix 1,
figure A.1.2), results in an unstable situation and k is unable to

develop its full value.

In summary if this hypothesis is correct then for the blocks tested,
angles of sliding depend upon the weights of the blocks and internal
angles of the blocks:

then S = N.tan & + k
Remembering that the values for ¢ and k derived from these experiments
A >relate to wood, then it can be seen that ¢ can take any value from
0 - 20.5°. For & = 17°, k = 0.35 + 0.16W Newtons
where o % o + 13°
T for & = 20°
k = 0.35 + 0.10W Newtons

?i‘ where o % & + 13°




Considering the situation for blocks with angles o close to o
it may be seen, especially in the lower part of fig. 5.10 that as «
approaches g, k drops to zero. It might be expected, therefore, that
blecks sliding on their edges, representing the case of all blocks where

a = B, may slide where § = o.

To investigate this, edge sliding tests were carried out. The
results of twelve edge sliding tests gave an average angle of sliding
of 21° with a standard deviation of 1.47°. Table 5.2 shows that for
@ = 21°, three blocks have negative values of k. In fact two of these
blocks, Wd2 and Wd1 toppled rather than slid. The other block Wa/Mt 1
slid at 20.5°. Assuming that the behaviour of this block may also be
represented by equation 5.1, it may be concluded that, making the
assumption that ¢ £ the lowest value of p observed, @ has an approximate

~

value of between 20° and 21° with k taking the values given in table 5.2.

Considering ¢ase 2, where it is no longer assumed that o must be
smaller than B then valués of ¢ and k, where k is constant, may be
obtained directly from figures 5.8 and 5.9. It is found that data for

‘blocks in position 1 with internal angles greater than 30° lie on
straight lines such that

S = N tan 25° + 0.039 (fig. 5.8)

and S

I

N tan 25° + 0.05 (fig. 5.9)

Similarly if k is obtained for each block numerically where @ = 25°
{see table 5.2) it is found that k is fairly constant for all blocks
with a greater than 30°, with a mean of 0.052 and standard deviation of

0.018.

Confirmation of this result was obtained by direct shear tests
(figure 5.12) which gave a value of @ = 26° and k = 0.05 for position 1

sliding. It is clear that blocks with internal angles less or slightly
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greater than o slid at angles (B) less than @. Presumably as angle B
approaches « (towards a toppling mode of failure) then the blocks become
unstable and lose both cohesion and a proportion of their resistance due

to friction.

In summary the data obtained by inclined plane sliding for blocks

in position 1 may be explained by two hypotheses.

Hypothesis 1. That e,»the angle of friction, is lower than the lowest
angle of sliding observed. If this is the case ‘then it
is shown that a cohesive term (k) must be introdﬁced to
explain the results, and that the cohesive term comprises
a constant plus a variable which is directly proportional
to the normal load applied. For tall blocks with
internal angle close to @, the cohesive term (k) no
Ionger increases with normal load, but drops off rapidly,
being zero when a = &.

Hypothesis 2. That » may be greater than the angle of sliding of some
blocks. In this case k may be taken as a constant for
blocks with a > & + 5°. Blecks sliding at lower angles
than @ evidently lose cohesion and a proportion of
frictional resistance.

Evidence for deciding which of these hypotheses is most likely

comes from the data for sliding in position 2.

If it is again assumed that the shear strength at sliding may be
expressed by equation 5.1, then it is logical to also assume that the
value of o for positions 1 and 2 will be the same, the blocks used for
sliding being the same in each case. Variations in sliding angle for
blocks in both positions may therefore be due to different 'cohesive!

mechanisms in each case.
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Figures 5.8 and 5.9 give shear load versus normal lond data at
sliding for each block in position 2. It is clear from these figures
that @ cannot equal 25° for position 2 sliding unless one introduces
a negative cohesive component, becoming increasingly negative with
increasing normal load. Figure 5.13 containing data for direct shea;

tests in position 2 similarly shows a lower angle for @.

Therefore, if o is a constant for both position 1 and position 2

sliding, it is unlikely that hypothesis 2, above, is true.

Reconsidering position 2 data in terms of hypothesis 1, the‘values
of o for position 2 sliding in figures 5.8 and 5.9 agree well with that
deduced for position 1 sliding. It is’also apparent that there is no
reductipn in k for blpcksiin position 2 where « approaches ¢. Both
2 and k are constants. The higher angle of sliding seen for blocks
with smaller a values, are simply a result of the cohesive constant
resisting a greater proportion of the shear load for lighter blocks
than for heavy‘blo;ks, and has no relation to «a except that « is related

to weight of the blocks.

The difference between angles of sliding for blocks in position 1
and position2 is, therefore, due to the variable component of cohesion
in position 1. In position 1 lines of equal stress run across the base
of the block parallel to the front edge. It may be summised, therefore
thata linear barrier is set up due to deformation at the front edge of

the block.
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In position 2 the more streamlined shape with concentration of stress
at the leading corner, rather than across any edge, prevents the formation

of any such deformation barrier.

This possible cause of resistance explains why blocks in position 1

slide faster than in position 2.

In position 1 the peak shear strength is due to friction plus a
cohesive constant plus a variable cohesive element due to deformation.
Once the deformation factor has been overcome then the block will have
a suddenly reduced shear strength; i.e. for these experiments,

S5 = N.tan ¢ + 0.35 + Cw ~> 8 = N.tan o + 0.35

where c"‘is a constant.

Position 2 sliding without this deformation component will have
the same strength at and during sliding, and hence slide more evenly.
Any minor obstacle in the path of the sliding block may cause the block

to stop sliding.

Conclusions
<2 rusions

Experiments in inclined plane sliding using wooden surfaces, have
indicated a relationship between the angle of sliding and weight and
geometry of blocks. A lowering of the angle of sliding is also seen
for blocks with corners pointed down slope relative to those sliding

edge on.

The data obtained may be explained where the shear strength is
represented by an equation such that
S = N.tan o + k

- where k is a variable cohesive component.

It is found that all the data for the wooden surfaces tested agrees

with a value of 2 of between 20 and 21°. k is a constant for position 2
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sliding and takes the value 0.098 Newtons for the wcoden surfaces used.
For position 1 sliding k is variable and is the sum of a constant
(approximately 0.05 N) plus a proportion of the weight of the block.
As the angle of the block increases towards @ however, the cohesive

cormponent begins to decrease, becoming zero where a = ga.

It is suggested that the variable component of k for position 1

sliding is due to deformation resulting in a ridge preventing sliding.



